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Perturbative Approach to Nonrenormalizable
Theories
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Using a perturbatively nonrenormalizable and non-perturbatively finite example
(delta-function-type potential in nonrelativistic quantum mechanics), we illustrate
that one can develop a perturbative approach for a nonrenormalizable theory.
The key idea is the introduction of an additional expansion parameter which
allows us to eliminate infinities from the perturbative expressions. The generated
perturbative series reproduce the expansion of the exact analytical solution.

1. INTRODUCTION

In the present paper we suggest a perturbative approach to nonrenormal-
izable theories. In this work renormalizability is understood in the framework
of perturbation theory: a theory is called renormalizable when divergences
are canceled in each order of the expansion in a coupling constant.

We assume that a given nonrenormalizable theory is finite and therefore
the singularities appearing in a series generated by perturbation theory are
fictitious. Fictitious singularities which cancel in expressions for physical
quantities have been analyzed earlier by simple examples of a Wilson loop
(Japaridze and Turashvili, 1989) and of the fermion mass (Japaridze et al.,
1991). We suggest a heuristic approach allowing us to avoid these singularities
and which is the minimal extension of the renormalization procedure.

The latter states that renormalization is nothing else but the expression
of physical quantities in terms of physical quantities (Collins, 1984; Weinberg,
1995). Specifically, when the Lagrangian contains N parameters, one calcu-
lates N physical quantities si , i 5 1, 2, . . . , N, resolves iteratively N parame-
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ters in terms of s, and substitutes these relations into the expression for sN11.
In renormalizable theories the regularization in the expression for the sN11

can be removed, i.e., the resulting series contain no divergences.
The proposed scheme is based on the introduction of an additional

expansion parameter. So the difference with the above procedure is that in
the case of N input parameters we consider N 1 1 (and not N ) regularized
expressions for physical quantities.

The question which immediately arises is how the physical quantities
can be defined in a nonrenormalizable theory. The problem is highly nontriv-
ial. Even quantum electrodynamics contains surprises, e.g., it turns out that
the fermion–fermion elastic scattering amplitude is nonphysical and only the
inclusive cross sections can be made finite (Weinberg, 1995). Besides the
well-established symmetry arguments (a physical quantity is presented by an
operator, commuting with constraints; Dirac, 1964) the rest of the criteria
are on an intuitive footing. We assume that S-matrix elements calculated in
a finite and nonrenormalizable theory are finite (generally speaking, this
statement may be not valid even in renormalizable theories; Japaridze and
Turashvili, 1998).

The idea that successful introduction of additional expansion parameter
can solve problems of infinities in perturbation theory can be illustrated by
the following example: suppose “physical quantities” of our “theory” are
given by the following three functions:

f1 5 x, f2 5
1
x

, f3 5 sin x 1 cos
1
x

If f1 is chosen as an expansion parameter, it is impossible to express all
remaining quantities as a series in positive powers of f1 (“perturbation theory”
leads to a series with infinite coefficients). The “theory” is “nonrenormaliz-
able.” The same is true when f2 or f3 is chosen as an expansion parameter.
But if one introduces besides f1 the additional expansion parameter f2, the
“physical quantity” f3 can be expanded in terms of f1 and f2:

f3 5 sin f1 1 cos f2 5 1 1 f1 1
1
2

f 2
2 1 . . .

Note that f3 can be expressed as a function of f1 and f2 in an infinite number
of different ways because these two parameters are not independent, but only
a particular choice of functional dependence on these two parameters allows
us to expand f3 in positive powers of f1 and f2. Although these parameters
are not independent, one can extract their numerical values from “experiment”
and afterward calculate f3 perturbatively.

At the moment we have no proof that the resulting series will reproduce
correctly the features of the exact solution. The simplest way to estimate the
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efficiency of the method is to compare the series with the exact solution.
We are not aware of realistic, exactly solvable nonperturbatively finite and
perturbatively nonrenormalizable field-theoretic models. Therefore we will
consider the exactly solvable quantum mechanical problem of a delta-func-
tion-type potential. Since ultraviolet divergences are considered as a trace of
short-distance singularities, this potential, describing a contact interaction, is
relevant in a discussion of the problems of divergences in field theory. Some
examples of regularization and renormalization of delta-function potentials
in nonrelativistic quantum mechanics have been considered (Beg and Furlong,
1985; Jackiw, 1991; Gosdzinsky and Tarrach, 1991; Weinberg, 1991; Manuel
and Tarrach, 1994; Kaplan et al., 1996).

In the present paper we apply our approach to perturbatively nonrenor-
malizable and non-perturbatively finite quantum mechanical models.

We show that the resulting series reproduce the expansions of exact
analytic expressions.

2. FINITE AND NONRENORMALIZABLE QUANTUM
MECHANICAL MODEL

We consider the example given by the following potential:

^x.V.x8& 5 [C 1 C2(¹2 1 ¹82)]d(x 2 x8)d(x) (1)

with two (yet) unspecified parameters C and C2. One could object that the
problem is not mathematically well defined. Note that we do not seek much
physics in this potential. For our illustrative purposes we take as a definition
of the model the cutoff regularized potential with the subsequent removal of
cutoff. For a definition of contact interaction in quantum mechanics see, e.g.,
Gosdzinsky and Tarrach (1991), Kirsch (1992), and Manuel and Tarrach
(1994). So we impose a cutoff in the momentum space and henceforth work
with the regularized potential:

VR( p8, p) 5 [C 1 C2( p82 1 p2)]u(L 2 p8)u(L 2 p) (2)

The exact amplitude, expressed in terms of two renormalized parameters,
is finite (Phillips et al., 1998). In other words it contains only two arbitrary
parameters which are fixed from two requirements on physical quantities.
The model is perturbatively nonrenormalizable, i.e., to remove divergences
in the framework of perturbation theory one has to include an infinite number
of additional counter terms into the potential. Thus the standard perturbative
renormalization technique leads to the conclusion that the physical quantities
depend on an infinite number of arbitrary parameters.

Below we omit lengthy calculations and quote the results only.
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Simple power counting leads to the following expansion of the T-matrix
(T [ S 2 1) in coupling constants C and C2:

T(E ) 5 o
`

n1,n250
Cn1Cn2

2 Ln113n221Bn1,n2(E, L) (3)

where the coefficients Bn1,n2(E, L) contain only nonpositive powers of L.
As a starting point of perturbative analysis, we solve iteratively the

Lippman–Schwinger equation for T(E ) and obtain

T(E ) 5 o
`

b,b2,i,i3,i550
Vbb2ii3i5(E )CbCb2

2 I iI i3
3 I i5

5 (4)

with finite coefficients Vbb2ii3i5(E ). The integrals I, I3, and I5 (see Appendix)
diverge as a linear, third, and fifth powers of the cutoff regulator. So far, the
amplitude requires renormalization.

We drop inverse powers of regulator L in I(E ) and write

I(E ) 5 2
1
p2 L 2

i
2p

(2E )1/2 5 I1 2
i

2p
(2E )1/2 [ I1 1 W(E ) (5)

Nonperturbative renormalization can be carried out by choosing the
scattering length a and the effective range re as the renormalization parameters
and thus fixing C and C2 (Phillips et al., 1998).

Designating CR 5 2pa 5 T.E50, C2R 5 reC 2
R /8p, we express C and C2

iteratively as a power series of CR and C2R:

C2 5 C2R 2 2CRC2RI1 1 3C 2
RC2RI 2

1 2 4C 3
RC2RI 3

1 2
3
2

C 2
2RI3 1 . . . (6)

and

C 5 CR 2 C 2
RI1 1 C 3

RI 2
1 2 C 4

RI 3
1 2 2CRC2RI3 1 C 5

RI 4
1 1 6C 2

RC2RI1I3

2 C 6
RI 5

1 2 12C 3
RC2R I 2

1I3 2 C 2
2RI5 1 . . . (7)

The substitution of (6) and (7) into (4) leads to the following expression for
the amplitude:

T(E ) 5 TR(CR , C2R, E ) 1 16C 2
2RE 2I1 1 . . . (8)

where we wrote explicitly the first term, remaining divergent after renormaliz-
ing iteratively C and C2. For the explicit expression of the finite part TR see
the Appendix; W(E ) is defined in (5).

In this simple potential model the T-matrix is a sum of bubble diagrams.
All the divergences are contained in these bubbles (one-loop subdiagrams).
Simple power counting shows that each loop can contain divergences ,L5,
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L3, and L [it is obvious from the expression for a loop, which reads
* d 3k(C 1 C2( p2 1 k2))(C 1 C2( p82 1 k2))/k2]. The maximum power L5

originates from the term C 2
2 when both vertices of the bubble are proportional

to C2. The coefficient of this divergence does not depend on momentum and
this divergence is included in the renormalization of the coupling constant
C. The coefficient of the next divergence, ,L3, contains momenta square and
is absorbed by a counter term for C2, i.e., it is included in the renormalization of
coupling constant C2. So, renormalization of C and C2 allows us to eliminate
divergences L5 and L3 from the perturbative expression for the T-matrix.

For the last type of divergence, ,L, the term 16C 2
2RE 2I1 remains after

the renormalization of the parameters of the potential, and thus the maximum
divergence of the n-loop contribution is Ln. The standard renormalization
technique leads to the conclusion that the theory is nonrenormalizable and
the physical quantities depend on an infinite number of arbitrary parameters.
In our case, when the exact solution is available we know that this conclusion
is wrong—the model is self-consistent in the sense that all the divergences
cancel.

It is convenient to reparametrize the renormalized coupling C2R as C2R 5
1–2 yC 2

R and write a formula analogous to (3):

T(E ) 5 o
`

n1,n250
Cn1

R Cn2
2RLn11n221BR

n1,n2(E, L)

5 o
`

n1,n251
yn2Cn112n2

R Ln11n221BR
n1,n2(E, L)

5 o
`

n1,n251
yn2(CRL)n11n221Cn211

R BR
n1,n2(E, L) (9)

where BR
n1,n2(E, L) contains only nonpositive powers of L. The terms with

n2 5 0 do not contain divergences because the potential with C2 5 0 is
renormalizable. The terms with n2 5 1 also do not contain divergences
because these divergences are absorbed into the renormalization of C2. Substi-
tuting C2R 5 1–2 yC 2

R into (8), we obtain

T(E ) 5 TR(CR , y, E ) 1 4C 4
Ry2E 2I1 1 . . . (10)

Now we are in a position to demonstrate how the method works.
According to our assumption (and as is known from the exact solution), T(E )
is finite. Consequently, the sum of terms containing positive powers of L
should be finite itself. We introduce quantity a related to this sum by the
following relation:



94 Japaridze and Gegelia

a(m) 5
1

4y2C3
Rm2 [T(m) 2 T(m).L50] 5 CRI1 1 . . . (11)

To ensure that a(m) is not complex, we take m negative.
From (9)–(11) it follows that a contains only positive powers of CR I1,

y, and CR. Thus CR I1 can be solved iteratively from (11) as a series in a, y,
and CR.

Expressing CR I1 in terms of a and substituting into (10) leads to

T(E ) 5 TR (CR , y, E ) 1 4C 3
Ry2E 2a 1 . . . (12)

In general, the finite part is also affected by a, but in a given order we have
the same TR. (12) is an expansion of amplitude in terms of y, CR , and a.

To compare the series (12), originating from the perturbation theory,
with the exact solution, we have to express latter in terms of the same a.
For the renormalized exact solution we have

T(E ) 5
CR(1 1 CR I1 1 2ECR y)

1 1 CR I1 2 2EI1yC 2
R 2 W(E )CR(1 1 CR I1 1 2EyCR)

(13)

and in the L → ` limit

T(E ) 5
CR

1 2 2EyCR 2 W(E )CR
(14)

Evidently, the solution is finite in the limit L → `.
We introduce the quantity

a(m) 5
1

4m2yC 3
R

[T(m2) 2 T(m).I150]

5
CR I1

[1 2 CRW(m)(1 1 2mCR)][1 2 CRW(m)(1 1 2mCR) 1 CR I1(1 2 2mCR 2 CRW(m))]
(15)

Now, extracting CR I1 from (15) and substituting into (13), we obtain an
expression for the exact solution:

T(E ) 5
N
D

(16)

where N and D are given in the Appendix. In the limit L → ` the expression
for T is the same, but now a is

a(m) 5
1

[1 2 CRW(m) 2 2myC 2
RW(m)][1 2 2myCR 2 W(m)CR]

(17)

The substitution of a from (15) into T 5 N/D results in expression (13) for
T(E ), while substitution of a from (17) leads to (14).
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So the exact solution, expressed in terms of y, CR , and a, is given by
expression (16), and introducing an additional expansion parameter in the
renormalized Lippman–Schwinger series (8), we obtain the series (12). It is
straightforward to check that the perturbative series (12) is the expansion of
the exact result given by (16). A tedious calculation shows that the same
statement is true in the next order.

Summarizing, although the quantum mechanical problem with contact
interaction (1) is perturbatively nonrenormalizable, by introducing an addi-
tional expansion parameter a we have obtained a finite perturbative expression
for the amplitude. It turns out that this series reproduces the expansion of
the exact solution (14). If the model under consideration were realistic, one
could extract the value of a from experiment and compare our result to data,
while the standard renormalization technique requires the introduction of an
infinite number of counter terms and leads to the conclusion that the theory
has no predictive power.

3. DISCUSSION

Introducing an additional expansion parameter, we were able to repro-
duce correctly the exact result for a perturbatively nonrenormalizable and
non-perturbatively finite quantum mechanical problem. As is clear from the
discussion of the toy model with f1, f2, f3 the approach is successful for finite
theories which face singularities in perturbative expansion. Roughly speaking,
introduction of the additional expansion parameter is equivalent to regulariz-
ing the remaining singularities in terms of the expression for the extra physical
quantity. Therefore, it is not surprising that this procedure leads to finite
series. Considering speculations on the nonperturbative finiteness of quantum
gravity (Nakanishi and Ojima, 1990; Isham, 1995; Thiemann, 1998), one
could try to apply the scheme for the gravitational interaction. Calculation
again results in a finite series (Gegelia et al., 1995). Since in the case of
quantum gravity exact solutions as well as experimental data are not available,
there is nothing to be compared with the resulting series. Therefore, the
result of Gegelia et al. (1995) can be considered for now as a mathematical
exercise only.

Although the suggested procedure leads to perturbative series with finite
coefficients, we have no criterion for distinguishing actually infinite theories
(when the exact solutions diverge or do not exist) from the non-perturbatively
finite ones. The same is true for any procedure when the character of the
convergence is not known. The problem of convergence of perturbation theory
series, still unsolved completely for renormalizable theories, can be traced
back to Dyson (1951).



96 Japaridze and Gegelia

From our point of view, the suggested scheme, leading to finite series
for nonrenormalizable theories, again confirms that renormalizability is not
the fundamental requirement for selecting a correct theory (Weinberg, 1995).

APPENDIX

The integrals appearing in (4) are

I(E ) 5 2 # d 3k
(2p)3

u(L 2 k)
2E + 2 k2

5 2
1
p2 FL 1

(2E )1/2

2
ln

1 2 (2E )1/2 /L
1 1 (2E )1/2 /LG 2

i
2p

(2E )1/2

In 5 22 # d 3k
(2p)3 kn23

where E + [ E 1 i0 and the finite part TR is

TR 5 CR 1 C 2
RW(E ) 1 C 3

RW(E )2 1 C 4
RW(E )3 1 C 5

RW(E )4 1 C 6
RW(E )5

1 8EW(E )CRC2R 1 4EC2R 1 12EW(E )2C 2
RC2R

1 16 EW(E )3C 3
RC2R 1 16E 2W(E )C 2

2R

The numerator N and denominator D of the expression (16) are equal to

N 5 CR 1 2EyC 2
R 2 a(m)[2yC 2

R(E 2 m) 2 2yC 3
RW(m)(E 2 m) 2 4Emy2C 3

R]

3 [1 2 W(m)CR 2 2mW(m)yC 2
R]

and

D 5 1 2 CRW(E ) 2 2EW(E )yC 2
R 1 a(m)[1 2 CRW(m) 2 2mW(m)yC 2

R]

3 [2yCR(m 2 E ) 2 2W(m)(m 2 E )yC 2
R 1 2W(m)W(E )(m 2 E )yC 3

R]

1 a(m)[1 2 CRW(m) 2 2mW(m)yC 2
R][4mE(W(m)

2 W(E ))y2C 3
R 1 2W(E )yC2

R]
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